

1

Smart Contract Security Audit Report

For

 W3BANK

Date Issued: Aug 17, 2023

Version: v1.0

Confidentiality Level: Public

2

Contents

1 Abstract ... 3

2 Overview ... 4

2.1 Project Summary .. 4

2.2 Report HASH... 4

3 Project contract details.. 5

3.1 Contract Overview ... 5

3.2 Code Overview ... 7

4 Audit results ... 12

4.1 Key messages .. 12

4.2 Audit details ... 13

4.2.1 timeElapsed >= PERIOD condition repeated 13

4.2.2 factory can be modified by any caller ... 15

4.2.3 The collateralFactorMantissa may be zero when the market is
updated ... 17

4.2.4 Setting the mining pool coefficient may appear to be zero 19

4.2.5 Nonsensical variable judgment condition .. 21

4.2.6 isBorrowOpenedOf[msg.sender] judgment condition is repeated
 .. 23

4.2.7 Funds transfer sequence is not secure ... 25

4.2.8 Privileged roles can update contract variables 27

5 Finding Categories .. 29

3

1 Abstract

This report was prepared for W3BANK smart contract to identify issues and
vulnerabilities in its smart contract source code. A thorough examination of
W3BANK smart contracts was conducted through timely communication with
W3BANK, static analysis using multiple audit tools and manual auditing of their
smart contract source code.

The audit process paid particular attention to the following considerations.

• A thorough review of the smart contract logic flow

• Assessment of the code base to ensure compliance with current best practice
and industry standards

• Ensured the contract logic met the client's specifications and intent

• Internal vulnerability scanning tools tested for common risks and writing
errors

• Testing smart contracts for common attack vectors

• Test smart contracts for known vulnerability risks

• Conduct a thorough line-by-line manual review of the entire code base

As a result of the security assessment, issues ranging from critical to informational
were identified. We recommend that these issues are addressed to ensure a high
level of security standards and industry practice. The recommendations we made
could have better served the project from a security perspective.

• Enhance general coding practices to improve the structure of the source
code.

• Provide more comments for each function to improve readability.

• Provide more transparency of privileged activities once the agreement is in
place.

4

2 Overview

2.1 Project Summary
Project Summary Project Information

Name W3BANK

Start date Aug 10, 2023

End date Aug 17, 2023

Platform PEGO Network

Contract type DeFi

Language Solidity

Audit content https://github.com/pego-labs/w3bank-lending-feed

Commits 4f41e2b5079f29f6581befa670b90c54000919f2

File Achievement.sol, AssistedReading.sol、

InterestRateModel.sol、LendController.sol、

LendTokenFactory.sol、Migrations.sol、

OracelBridge.sol、OracleFactory.sol、

TokenTemplate.sol、OracleTemplate.sol

2.2 Report HASH
Name HASH

W3BANK 7A33881021B25CE39330FF8E05AD0C6CAB7ABEA6
E42FBC02647925184B7AFABC

5

3 Project contract details

3.1 Contract Overview

OracleTemplate.sol

The contract is a fixed-window oracle contract, which is used to provide price
information of trading pairs for other smart contracts to use. It uses the Uniswap V2
interface contract and library contract to obtain the price of the transaction pair,
and calculates the average price. Judging by the implementation mechanism of the
contract, the contract administrator will periodically call the specified function to
update the price and calculate the average value to provide more stable price data.

AssistedReading.sol

Auxiliary query contract, mainly used for front-end query data.

InterestRateModel.sol

The contract mainly implements the interest rate algorithm required in the project,
and calculates the lending rate and supply rate based on the fund usage rate and
other parameters.

LendController.sol

The contract implements the management and control functions of the lending
market, including adding markets, setting parameters, calculating users' available
funds, and calculating liquidation rewards, etc. At the same time, it also provides an
interface for users to participate in the market, withdraw from the market and
extract platform benefits.

LendTokenFactory.sol

This contract implements a factory contract for deploying the market contract based
on the TokenTemplate contract. It also records all market contracts created through
this contract; and all users can query.

Migrations.sol

Migration contract, used to record the migration history and version information of
the contract.

6

OracelBridge.sol

The function of this contract is to serve as the general oracle of the lending market,
bridging the actual price oracles associated with different tokens. By setting the
price oracle address of different loan certificates and burning tokens, the actual
price of the underlying asset can be obtained.

OracleFactory.sol

This contract implements the oracle machine construction contract, which allows
the creation and management of multiple oracle machines. The contract saves all the
oracle machines created through this contract, and provides the operation of batch
updating prices for all oracle machines.

TokenTemplate.sol

The contract implements a loan market contract template. Users can obtain loan
certificates by depositing assets, lend assets and repay the loan. Users can redeem
deposited assets, and other users can liquidate loans and obtain collateral. The
manager of the contract can set the borrowing parameters and the receiving
address of the liquidation reward, etc. The contract provides basic lending market
functions.

7

3.2 Code Overview

OracleTemplate Contract

Function Name Visibility Modifiers

initialize External initializer

checkUpdate External -

update External -

consult External -

AssistedReading Contract

Function Name Visibility Modifiers

initialize External initializer

getCollateralFactor Internal -

getMarketDetailOne Public -

getMarketDetail External -

getDebtor External -

getBorrowBalance External -

bestLiquidation External -

InterestRateModel Contract

Function Name Visibility Modifiers

initialize External initializer

utilizationRate Public -

getBorrowRate Public -

getSupplyRate Public -

8

Achievement Contract

Function Name Visibility Modifiers

initialize External initializer

setFactory External -

addMarket External onlyRole(MANAGER_ROLE)

setCollateralFactorr External onlyRole(MANAGER_ROLE)

setBorrowCaps External onlyRole(MANAGER_ROLE)

setMintSwitch External onlyRole(MANAGER_ROLE)

setBorrowSwitch External onlyRole(MANAGER_ROLE)

setFarmOutPutPerBlock External onlyRole(MANAGER_ROLE)

setPoolPoint External onlyRole(MANAGER_ROLE)

setPriceOracle External onlyRole(DEFAULT_ADMIN_ROLE)

setBurnToken External onlyRole(MANAGER_ROLE)

getBurnAmount External checkListed

beforeTransfer External checkListed

beforeMint External checkListed

beforeBorrow External checkListed

beforeRepayBorrow External checkListed

beforeRedeem External checkListed

beforeSeize External checkListed

getMaxRedeem External -

liquidateCalculateSeizeTokens External -

checkLiquidateBorrow External -

getHypotheticalAccountLiquidity Public -

checkMembership External -

9

enterMarkets External -

exitMarket External -

addToMarket Internal -

updatePool Public -

takeReward External -

takeRewardFromMarket Internal -

deposit Internal -

withdraw Internal -

earned External -

earnedByMarket Internal -

getTokenPerShare Internal -

getAllMarkets External -

getAssetsIn External -

isDeprecated Public -

OracleFactory Contract

Function Name Visibility Modifiers

initialize External initializer

getAllLOracle External -

checkUpdate External -

update External onlyRole(MANAGER_ROLE)

createOracle External -

10

TokenTemplate Contract

Function Name Visibility Modifiers

initialize External -

accrueInterestPublic Public -

_updateBorrowSnapshot Internal -

setBorrowRateByPerid External -

setadminSeizeReceiver External -

_beforeTokenTransfer Internal -

mint External -

borrow External -

repayBorrow External -

_repayBorrow Internal -

redeem External -

liquidateBorrow External -

seize External -

_seize Internal -

getCurrentPeriod Public -

updateBorrowByPeriod Internal -

exchangeRateCurrent Public -

getCash Public -

balanceOfUnderlying External -

borrowBalance Public -

getAccountSnapshot External -

supplyRatePerBlock External -

borrowRatePerBlock External -

11

utilizationRate External -

doTransferIn Internal -

doTransferOut Internal -

LendTokenFactory Contract

Function Name Visibility Modifiers

initialize External initializer

getAllLtokens External -

createLendToken External onlyRole(MANAGER_ROLE)

OracelBridge Contract

Function Name Visibility Modifiers

initialize External initializer

setBurnToken External onlyRole(DEFAULT_ADMIN_ROLE)

setPriceOracle External onlyRole(DELEGATE_ROLE)

getUnderlyingPrice External -

12

4 Audit results

4.1 Key messages
ID Title Severity Status

01 timeElapsed >= PERIOD condition repeated Informational confirmed

02 factory can be modified by any caller Medium fixed

03 The collateralFactorMantissa may be zero when the
market is updated

Informational confirmed

04 Setting the mining pool coefficient may appear to be
zero

Informational confirmed

05 Nonsensical variable judgment condition Informational confirmed

06 isBorrowOpenedOf[msg.sender] judgment condition
is repeated

Informational confirmed

07 Funds transfer sequence is not secure Medium fixed

08 Privileged roles can update contract variables Low confirmed

13

4.2 Audit details

4.2.1 timeElapsed >= PERIOD condition repeated

ID Severity Location Status

01 Informational OracleTemplate.sol: 54, 86 confirmed

Description

Both checkUpdate() and update() in the OracleTemplate contract will judge whether
the condition of timeElapsed >= PERIOD is satisfied. The above two methods are
called by the update() method of the OracleFactory contract. The calling order of the
method is to call OracleTemplate.checkUpdate() first and then OracleTemplate.
update(). Since checkUpdate() has already judged the timeElapsed >= PERIOD
condition, and OracleTemplate.update() will not be executed when the condition is
not met, but if the condition is met, the conditions in both methods will be met.

Code location:

OracleFactory.sol

OracleTemplate.sol

14

Recommendation

It is recommended to delete the timeElapsed >= PERIOD condition judgment in the
OracleTemplate.update() method.

Status

confirmed.

The project party responded that the oracle instance contract is not necessarily
created and managed by the oracleFactory contract, so this redundant judgment is
necessary.

15

4.2.2 factory can be modified by any caller

ID Severity Location Status

02 Medium LendController.sol: 149, 155 fixed

Description

The setFactory() method is used to set the factory. The attacker can make the return
value of the _factory contract controllerAddr() method equal to address(this) by
constructing the _factory contract, and finally complete the modification of the
factory. The factory mainly makes judgments when adding a market. When the
return value of underlyingTokenAddrOf is maliciously set when adding a market,
the judgment condition will fail. Of course, you can continue to call the factory to
make changes here.

Code location:

16

Recommendation

It is recommended to restrict callers of this method to administrators.

Status

fixed.

commits:f16195d1708db62fbe208cdec83b3bdb3ea45b11

17

4.2.3 The collateralFactorMantissa may be zero when the market is updated

ID Severity Location Status

03 Informational LendController.sol: 162, 207 confirmed

Description

When addMarket() and setCollateralFactorr() update collateralFactorMantissa, it is
judged that _collateralFactorMantissa cannot be greater than 0.85e18, but there is
no whether _collateralFactorMantissa is zero.

Code location:

18

Recommendation

It is recommended to judge that _collateralFactorMantissa cannot be zero.

Status

confirmed. The project side responded that collateralFactorMantissa is allowed to
be 0 in the business. If it is 0, it means that the currency cannot be calculated as
liquidity.

19

4.2.4 Setting the mining pool coefficient may appear to be zero

ID Severity Location Status

04 Informational LendController.sol: 268, 299 confirmed

Description

The setPoolPoint() method is used to set the mine pool coefficient. There are four
situations when setting this method, which are

1) pool.allocPoint == 0 && allocPoint > 0

2) pool.allocPoint > 0 && allocPoint == 0

3) pool.allocPoint > 0 && allocPoint > 0

4) pool.allocPoint == 0 && allocPoint == 0

Among them, the first two have been judged in the setPoolPoint() method, which
are mainly used for adding and deleting. The third case is to update the coefficient,
and the fourth case can be executed normally. But it doesn't make any sense.

Code location:

20

Recommendation

It is recommended to add judgment so that the condition of pool.allocPoint == 0 &&
allocPoint == 0 cannot be executed normally.

Status

confirmed.

The project side responded that setPoolPoint is also allowed to appear in the
business. The proportion of the mining pool is 0, and 0 means that the currency does
not generate income.

21

4.2.5 Nonsensical variable judgment condition

ID Severity Location Status

05 Informational LendController.sol: 354, 374; 442, 458 confirmed

Description

isTransferPaused is a global variable, the default is false, and this variable will not
change, always false. In the beforeTransfer() method, the result of judging
the !isTransferPaused condition will always be satisfied, and the judgment will be
meaningless.

Code location:

isSeizePaused is a global variable, the default is false, and this variable will not
change, always false. In the beforeSeize() method, the result of judging
the !isSeizePaused condition will always be satisfied, and the judgment will be
meaningless.

Code location:

22

Recommendation

It is recommended to delete the meaningless judgment condition.

Status

confirmed.

The project side responds to isTransferPaused and isSeizePaused although they are
static variables in the contract and cannot be modified. But the contract itself can be
upgraded, and changes can be made by upgrading the contract. In order to control
the behavior of the entire market when necessary.

23

4.2.6 isBorrowOpenedOf[msg.sender] judgment condition is repeated

ID Severity Location Status

06 Informational LendController.sol: 386, 415; 888, 893 confirmed

Description

When the beforeBorrow() method is executed, it will judge whether the
isBorrowOpenedOf condition is satisfied. After the isBorrowOpenedOf[msg.sender]
is used to judge the condition, it will continue to be judged by the isDeprecated()
method. The isDeprecated() method also judges the isBorrowOpenedOf condition. If
the condition of isBorrowOpenedOf[msg.sender] is satisfied, the judgment result of
the isDeprecated() method here is always false, so the judgment condition can
always be passed here. Therefore, the judgment condition of
isBorrowOpenedOf[msg.sender] and !isDeprecated(msg.sender) are repeated.

Code location:

24

Recommendation

It is recommended to delete one of the above two judgment conditions..

Status

confirmed.

The project party responded that it was indeed repeated judgments, and decided to
modify and delete the repeated judgments.

25

4.2.7 Funds transfer sequence is not secure

ID Severity Location Status

07 Medium TokenTemplate.sol: 359, 376 fixed

Description

When a user redeems assets, since two fund transfers are involved, it is
recommended to destroy the LToken borrowed by the user first, and then transfer
the corresponding amount of assets to the user to avoid reentry.

Code location:

Recommendation

It is recommended to destroy the LToken borrowed by the user first, and then
transfer the corresponding amount of assets to the user to avoid re-entry.

Status

fixed.

commits: f16195d1708db62fbe208cdec83b3bdb3ea45b11

26

27

4.2.8 Privileged roles can update contract variables

ID Severity Location Status

08 Low TokenTemplate.sol: 197, 218

OracelBridge.sol: 30, 51; 60, 80

confirmed

Description

TokenTemplate.sol

adminSeizeReceiver variable,The admin privileged role can set the maximum
lending ratio of units and the receiving address of platform liquidation rewards. If
the admin privileged role is maliciously controlled, it may cause the loss of project
and user funds.

Code location:

OracelBridge.sol

Since the DEFAULT_ADMIN_ROLE and DELEGATE_ROLE privileged roles can set
priceOracle, when the privileged role is maliciously controlled, it may lead to
obtaining the price in the malicious Oracle contract, resulting in the loss of project
and user funds.

Code location:

28

Recommendation

It is recommended that privileged roles be managed using multi-signatures and
timelocks.

Status

Confirmed.

29

5 Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of
components that act against the nature of decentralization, such as explicit
ownership or specialized access roles in combination with a mechanism to relocate
funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate
different, more optimal EVM opcodes resulting in a reduction on the total gas cost of
a transaction.

Mathematical Operations

Mathematical Operation findings relate to mishandling of math formulas, such as
overflows, incorrect operations etc.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as
owner-only functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain
edge cases that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory,
such as the result of a struct assignment operation affecting an in-memory struct
rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e.
incorrect usage of private or delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather
comment on how to make the codebase more legible and, as a result, easily
maintainable.

30

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet
contain different code, such as a constructor assignment imposing different require
statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase
in their raw format and should otherwise be specified as constant contract variables
aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it
impossible to compile using the specified version of the project.

31

Disclaimer

This report is issued in response to facts that occurred or existed prior to the
issuance of this report, and liability is assumed only on that basis.
Shield Security cannot determine the security status of this program and assumes
no responsibility for facts occurring or existing after the date of this report. The
security audit analysis and other content in this report is based on documents and
materials provided to Shield Security by the information provider through the date
of the insurance report. in Shield Security's opinion. The information provided is not
missing, falsified, deleted or concealed. If the information provided is missing,
altered, deleted, concealed or not in accordance with the actual circumstances,
Shield Security shall not be liable for any loss or adverse effect resulting therefrom.
shield Security will only carry out the agreed security audit of the security status of
the project and issue this report. shield Security is not responsible for the
background and other circumstances of the project. Shield Security is not
responsible for the background and other circumstances of the project.

